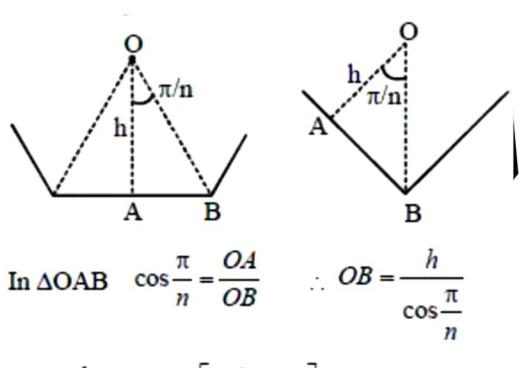

of all the polygons is at height h from the ground. They roll on a horizontal surface about the leading vertex without slipping and sliding as depicted. The maximum increase in height of the locus of the center of mass for each polygon is  $\Delta$ . Then  $\Delta$  depends on n and h as

Consider regular polygons with number of sides  $n = 3, 4, 5 \dots$  as shown in the figure. The center of mass




(A) 
$$\Delta = h \sin^2\left(\frac{\pi}{n}\right)$$
 (B)  $\Delta = h \sin\left(\frac{2\pi}{n}\right)$  (C)  $\Delta = h \tan^2\left(\frac{\pi}{2n}\right)$  (D)  $\Delta = h \left(\frac{1}{\cos\left(\frac{\pi}{n}\right)} - 1\right)$ 

## Solution

Correct option is D)

The answer C shows the each polygon depends on the n and h is given



$$\Delta = \frac{h}{\cos\frac{\pi}{n}} - h = h \left[ \frac{1}{\cos\frac{\pi}{n}} - 1 \right]$$